Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anim Reprod Sci ; 260: 107383, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38061197

RESUMO

The objective of this study was to evaluate the effect of the addition of different percentages of seminal plasma (SP) during the cooling at 5 °C of alpaca spermatozoa from vas deferens. Fifteen pools of sperm from vas deferens were evaluated and then divided into four aliquots that were diluted to a final concentration of 30 × 106 sperm/ml with either: (1) Tris with 20% egg yolk (T-EY) (control, 0% SP), (2) T-EY with 10% SP, (3) T-EY with 25% SP, and (4) T-EY with 50% SP. Samples were cooled at 5 °C and the following sperm parameters were evaluated after 24 and 48 h of storage: motility, viability, membrane function, acrosome integrity, morphology, and chromatin condensation. Motility was also evaluated after 72 h of storage. A significant decrease in progressive and total sperm motility was observed in samples cooled with 50% SP with respect to all diluted samples, while these parameters were preserved in samples cooled with 0%, 10%, and 25% SP. The percentages of sperm viability, normal morphology, and highly condensed chromatin did not change after the cooling process and were similar between cooled samples. Although a significant decrease was observed in the percentage of spermatozoa with functional membranes and with an intact acrosome in all refrigerated samples compared to raw sperm, the greatest decrease was observed in samples cooled with 50% SP. No advantage was observed from the addition of SP to alpaca spermatozoa obtained from vas deferens and being cooled. In addition, to preserve the sperm motility of cooled samples for up to 72 h, it should be recommended to include a 10% SP in the extender.


Assuntos
Camelídeos Americanos , Preservação do Sêmen , Masculino , Animais , Sêmen , Motilidade dos Espermatozoides , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos , Espermatozoides , Cromatina
2.
Front Vet Sci ; 7: 594926, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33585592

RESUMO

It is not easy to separate frozen-thawed South American camelid sperm from seminal plasma (SP) and diluents to be used for in vitro embryo production. The objective of this study was to evaluate Androcoll-E™ (AE) efficiency to separate llama sperm from SP and freezing extender in frozen-thawed semen. A total of 22 ejaculates from five Lama glama males were collected using electroejaculation. After performing semen analysis (sperm motility, concentration, viability, membrane function, and acrosome integrity), samples were cryopreserved with a diluent containing lactose, ethylenediaminetetraacetic acid (EDTA), egg yolk, and 7% dimethylformamide. After thawing, samples were divided in aliquots, one of which was used as a control and the others processed by AE. Experiment 1 (12 ejaculates): 100 µl of frozen-thawed semen was placed on top of 1,000 µl AE column and centrifuged at 800 g for 10 min. Experiment 2 (10 ejaculates): two samples of 100 µl of frozen-thawed semen were placed on two columns of 500 µl AE each, and both were centrifuged at 800 g for 10 and 20 min, respectively. Pellets were resuspended in Tyrode's albumin lactate pyruvate (TALP) medium, and sperm parameters were evaluated. A significant decrease in all sperm parameters was observed in thawed samples compared to raw semen. AE allowed the separation of frozen-thawed sperm from SP and freezing extender independently from the height of the column used and time of centrifugation assayed. Although no significant differences were found between AE columns, higher sperm recovery was observed with 500 µl of AE coupled with 20 min of centrifugation. Despite the significant decrease observed in sperm motility in AE samples, no changes in sperm viability, membrane function, and acrosome integrity were observed when comparing control thawed semen with the sperm recovered after AE (p > 0.05). The use of AE columns, either 500 or 1,000 µl, allows the separation of frozen-thawed llama sperm from SP and freezing extender, preserving the viability, membrane function, and acrosome integrity. Of the protocols studied, 800 g centrifugation during 20 min using a 500 µl column of AE would be the method of choice to process frozen-thawed llama semen destined for reproductive biotechnologies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...